Performance Evaluation of Recurrent RBF Network in Nearest Neighbor Classification
نویسنده
چکیده
Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient systems that perform nearest neighbor classification with real-valued static prototypes. It has been shown in [1] that a continuous-time dynamical neural network model, employing a radial basis function and a sigmoid multi-layer perceptron subnetworks, is capable of maximizing such an energy form locally, thus performing almost perfectly nearest neighbor classification, when initiated by a distorted pattern. This paper reviews the proposed design procedure and presents the results of the intensive experimentation of the classifier on random prototypes.
منابع مشابه
Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملکاربرد الگوریتمهای دادهکاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد
Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...
متن کاملRBF-based neurodynamic nearest neighbor classification in real pattern space
Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient systems that perform nearest neighbor classification with real-valued static prototypes. It is shown in this paper that a continuous-time dynamical neural network model, employing a radial basis function and a sigmoid multi-layer perceptron sub-networks, is...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کامل